
URCap guide
BitMetrics | Version: 1.3

Pick[+] URCap guide
For Pick[+] version 1.3

This document serves as a brief guide on how to use the Pick[+] URCap, how to use it
to create a custom Pick & Place application and how to take advantage of all its
functionalities. This document explains the different program nodes provided by the
Pick[+] URCap and how to use them. Additionally, it explains in detail the information
provided by the Pick[+] server to the robot, available from the program in the form of
global variables.
Examples on how to use the URCap also can be found on the several video tutorials
that cover some of the most common functionalities of Pick[+]. More precisely, it is
recommended to revise the videos called Create a U-Pick application and K-Pick:
application creation. The videos can be found in the following link:
https://www.bitmetrics.es/resources

Page # 1

https://www.bitmetrics.es/resources


URCap guide
BitMetrics | Version: 1.3

Installation

Prerequisites:

● URCap file (.urcap extension) located on a USB drive or downloaded from the
Pick[+] repository (refer to the Installation Guide's "Downloads" section).

Procedure:

1. Insert USB Drive: Insert the USB drive containing the URCap file into the UR
PolyScope teach pendant.

2. Access URCaps Settings: Navigate to the following path within UR PolyScope:
○ Settings > System > URCaps

3. Add URCap: Click the "+" button to open the file selection window. Locate and
select the desired URCap file from the USB drive.

4. Restart PolyScope: Restart PolyScope to finalize the installation process.

Page # 2



URCap guide
BitMetrics | Version: 1.3

Pick[+] URCap Nodes
This section provides an overview of the program nodes integrated within the Pick[+]
URCap. These nodes are essential for the execution of Pick[+] applications, offering the
necessary functions to interact with the Pick[+] system from your robot program. This
section will cover their correct usage, configuration parameters, and specific features.

For all nodes, the user has access to help documentation from the teach pendant itself,
accessed clicking on the Help button.

→

Pick[+] trigger

Functionality: Upon activation, the Pick[+] trigger node instructs the Pick[+] server to
capture a scene image (camera trigger) and initiate the pick candidate detection
process.

Configuration Parameters: To ensure effective image capture and pick candidate
selection, the following parameter sets must be configured:

● Pick Parameters: To configure the detection (category of the object to pick and
environment box)

● Pick Waypoints: Specify robot waypoints for the picking trajectory.
● Collisions: Enable/disable collision checking.
● Cycle Time: Configure cycle time measuring.

Page # 3



URCap guide
BitMetrics | Version: 1.3

Server connection required

To configure certain parameters of the Pick[+] trigger node (e.g., pick category,
environment box), an active connection to the Pick[+] server in execution mode is
required. This means the robot must be connected to the Pick[+] server, and a Pick[+]
application must be running. If the connection is not established, the node will display
an error message indicating the configuration failure.

Node without connection Node with connection

Page # 4



URCap guide
BitMetrics | Version: 1.3

Pick parameters

The configuration of pick parameters involves two elements:

● Environment Box
○ This parameter references the environment box from the currently active

pick environment for the Pick[+] application. By default, the field is set to
‘no box’.

○ The selected box will be used to filter out any detections outside its region,
which can be useful to filter out undesired detections in cluttered
environments. If “no box” is selected, this filtering step is not executed.

○ Additionally, the selected box will be used to compute the pick angle. The
pick angle is the angle that the z-axis of the TCP will form with respect to
the normal of the base of the box. Any candidate with an angle greater
than the angle threshold (set in the Pick[+] template node) will be
disregarded. If “no box” is selected, angle will be computed with respect to
the default case:

■ For eye-in-hand configuration, the robot XY plane will be used as
the reference working surface.

■ For hand-eye configuration, the pick angle will be computed with
respect to the z-axis of the camera.

○ WARNING: While users retain the autonomy to use this feature, it is
strongly recommended to define and use a box.

● Pick Category
○ This parameter specifies the category of interest from the set defined

within the Pick[+] application. The field defaults to ‘all categories’, meaning
all defined positive categories are considered eligible candidates for the
trigger action.

WARNING: The boxes and categories available in the current environment
and application are updated once the Trigger node is opened. Therefore, if a

Page # 5



URCap guide
BitMetrics | Version: 1.3

different environment or application is set and the same robot program is used, it
is necessary to open the Trigger node to ensure that the specified box and
category exist in the current environment and application.

Pick waypoints

The configuration of pick waypoints involves two elements:

● Home pose:
○ Serves as the starting point for the robot’s pick action or trajectory. The

home waypoint is automatically set and it’s computed from the received
pick point and the user-specified offset.

○ The home pose is obtained by translating the user-specified distance (in
meters) away from the picking pose, in the negative direction of the pick
point z-axis.

● Pre-pick pose:
○ Represents a pose slightly offset from the pick point, determined by the

user-provided offset, in a similar manner as the home pose.
○ This pose is recommended for actuators/grippers with a variable Tool

Center Point (TCP), such as certain finger grippers. In those cases, the
pre-pick pose should be configured with the same distance that the TCP
moves when actuating.

○ In scenarios involving a variable TCP actuator, the grip action should be
initiated from the pre-pick pose.

Page # 6



URCap guide
BitMetrics | Version: 1.3

Collisions

This tab allows to enable/disable the collision analysis of the pick points. The decision to
perform the analysis is contingent upon the specific requirements of the application:

● For applications operating in a 2D environment, collision analysis may be
deemed unnecessary. Omitting this analysis can result in a slight reduction of the
cycle time.

● Conversely, in a 3D environment, conducting collision analysis is crucial to
ensure the safety and efficacy of the robot’s trajectory and actions.

WARNING: While users retain the autonomy to activate or deactivate collision
analysis, it is strongly recommended to enable this feature.

Cycle time

The cycle time measurement can be approached in three distinct ways, depending on
the requirements of the application:

● No measurement:
○ In this mode, no cycle time measurement is conducted.

● Time between triggers:

Page # 7



URCap guide
BitMetrics | Version: 1.3

○ Cycle time is automatically calculated based on the duration between two
successive calls of a Pick[+] trigger node.

● Custom measurement:
○ Cycle time is measured using the Pick[+] cycle timer node, allowing for a

custom measurement of cycle time. Refer to the Pick[+] cycle timer node
section for more information.

If cycle time measurement is selected, the user will be able to set a threshold value.
Surpassing this threshold will not cause any exception, but will be reflected on the value
of the global variable PP_error (refer to the Global variables section). The current and
average cycle time will be displayed on the Pick[+] client.

Page # 8



URCap guide
BitMetrics | Version: 1.3

Pick[+] template

Functionality: This node has two main functionalities. First, it requests to the Pick[+]
server the next pick candidate. Second, it generates a template for the robot pick
program, including:

● Movement to the home pose (approximation pose).
● Movement to the pre-pick pose
● Movement to the pick pose
● Movement to the pick deeper pose

Configuration Parameters: The following parameter sets must be configured:

● Angle threshold: As commented in the Pick[+] trigger section, for every pick
candidate received by the robot, its angle with respect to the working surface is
measured (depending on the environment box selected in the Pick[+] trigger
node. If the measured angle is greater than the angle threshold, the
candidate will be disregarded. The measured angle can be monitored using
the global variable PP_angle.

○ WARNING: The choice of camera is critical in determining the expected
measured angle. While the expected angle of the pick pose might be 0
degrees, minor discrepancies in camera readings can result in a
measured angle that exceeds 0 degrees.

○ WARNING: It is crucial to understand that the angle value set in this
node is a threshold for candidate selection rather than a configuration of
the pick pose itself. This value is utilized to eliminate unsuitable
candidates and does not enforce the pick pose to conform to this angle.

● Force threshold: When moving to the different poses in the template, the force
at the tool flange will be monitored in the form of an Until condition. This means
that the robot will move towards the indicated pose until it reaches it or until the
force at the tool flange is greater than the indicated threshold.

Page # 9



URCap guide
BitMetrics | Version: 1.3

Template structure
When the Pick[+] template node is added to the program, a template of the robot
program to perform the pick action is generated. The following figure shows the
generated template.

Page # 10



URCap guide
BitMetrics | Version: 1.3

● ① Program executed if a candidate has been found

○ Ⓐ Movement to the home pose

This part of the program moves the robot to the home pose (or
approximation pose). This pose is computed based on the configuration
set in the Pick[+] trigger node. By default, the movement is done in the
joint space (MoveJ) and with the force Until condition. However, for this
movement in particular, this Until condition can be disregarded if the user
sees it fit.

○ Ⓑ Movement to the pre-pick pose

This part of the program moves the robot to the pre-pick pose, computed
based on the configuration set in the Pick[+] trigger node. This pose is
only necessary for grippers with variable TCP without self
compensation. As explained in the Pick[+] trigger section, these kinds of
grippers may require that the tool is activated at a certain distance from
the piece. This pose can be used for that purpose.

Comment out or delete this part of the program if your gripper
doesn't match the previous description. Otherwise, this pose will
only add cycle time.

If used, it’s recommended to change the Until condition from
Expression to Until contact (if possible).

○ Ⓒ Movement to the pick pose

This part of the program moves the robot to the pick pose. This pose is the
actual pose estimated by the Pick[+] server. In addition to the Until
condition used to monitor the force on the tool flange, it is recommended
to use any extra sensors that are available. For example, if a vacuum
gripper is used and it has a signal (analogue or binary) that indicates
whether the vacuum is successful or not, an Until condition can be added
with that signal. In this way, the robot will move towards the pick pose until
it arrives, until a contact force is detected or until the vacuum has been
performed. This ensures a more accurate and safer pick for the robot and
the rest of the elements.

Page # 11



URCap guide
BitMetrics | Version: 1.3

It’s recommended to change the Until condition from Expression
to Until contact (if possible).

○ Ⓓ Movement to the pick deeper pose

If no contact has been detected when moving to the pick pose, this part of
the program will move the TCP of the robot a small distance towards the
object. This additional movement enables the correction of pick point
estimation errors that occur when the pick point is located above the
object, either due to a poor camera reading or other reasons.

It’s recommended to change the Until condition from Expression
to Until contact (if possible).

○ Ⓔ Grip action

If the tool requires to be at the pick point to be activated, the user should
actuate the gripper here. However, depending on the tool and application,
it may be more effective to activate the tool at a different point in the
program. For instance, a vacuum gripper may work better if the vacuum is
activated at the home pose rather than upon contact with the part. This
also allows for vacuum sensor monitoring, as mentioned in a previous
example.

○ Ⓕ Movement to the post pick pose

Once the robot has grasped the object, this section of the program moves
the robot to a pose away from the object. By default, this position is the
same as the pre-pick pose. The user can choose to use the home pose
instead (by changing the waypoint from PP_postpick to PP_home in the
program) or to use another position of their choice.

● ② Program executed if no candidate has been found

If no suitable candidates have been detected or all have been discarded for other
reasons, such as being out of the box or incorrect pick angle, this part of the
program will be executed. The user is free to add any additional actions here.

Page # 12



URCap guide
BitMetrics | Version: 1.3

Key considerations
● To be able to add a Pick[+] template node to the program, at least one Pick[+]

trigger node must be present as well.
● In all movements involving the Until condition with the force threshold (Ⓐ-Ⓓ), it’s

recommended to use (if possible), the Until contact condition instead.

● If no pick candidates are found after an iteration, the variable PP_triggers will be
incremented by 1. When this variable reaches 3, a pop-up will be launched,
stopping the execution of the program and informing the user that no picks have
been found. Depending on its value, this variable can be used to change the
photo pose, allowing for up to 3 different photo poses. This can be particularly
useful for bin-picking, as changing the camera angle could detect objects that
were previously unidentifiable from the previous pose. If a candidate is
detected, PP_triggers will be reset to 0.

Page # 13



URCap guide
BitMetrics | Version: 1.3

Pick[+] LED lights

Functionality: The Pick[+] LED lights node is designed to control the camera
illumination by activating or deactivating the corresponding digital output. To ensure
proper operation, the corresponding digital port must be configured within the Pick[+]
main interface. For detailed setup instructions, refer to the Application Settings section
in the Pick[+] guide.

Configuration: When adding this node to the program, the user is required to specify
the desired state of the lights—either to turn them ON or OFF.

Server connection required

To obtain from the Pick[+] server to which digital port the camera lights are connected,
an active connection to the Pick[+] server in execution mode is required. This means
the robot must be connected to the Pick[+] server, and a Pick[+] application must be
running. If the connection is not established, the node will display an error message
indicating the configuration failure.

Key considerations
● Continuous operation of lights is not recommended. It is preferable to engage the

lights only as needed rather than maintaining them in an always-on state. This
intermittent approach promotes more effective heat dissipation, which is
particularly beneficial in environments with elevated temperatures.

● To make sure that the Pick[+] server captures the image with the lights ON, they
should be switched OFF at least 0.3 seconds after the camera trigger is

Page # 14



URCap guide
BitMetrics | Version: 1.3

performed. The value of 0.3 seconds is a guideline, the actual limit value may
vary depending on the equipment and camera used. The user is recommended
to test with a higher value (0.5 seconds) and go as low as possible.

Page # 15



URCap guide
BitMetrics | Version: 1.3

Pick[+] cycle timer

Functionality: When the Custom Measurement option is selected during the setup of
the Pick[+] trigger node, this node enables the cycle time measurement of the process,
measuring the time elapsed between two specific points in the robot program.

Configuration: When adding this node to the program, the user is required to specify if
the node should start or stop the timer.

Page # 16



URCap guide
BitMetrics | Version: 1.3

Global variables
This section outlines the global variables generated by the URCap program nodes.
These variables can be helpful to the user when programming the rest of their program.

PP_flag
Boolean variable that indicates whether a candidate has been selected for pick or not.

PP_pickpoint
This global variable stores the pick pose estimated by Pick[+]. The pose is defined with
respect to the robot base.

● Variable type: Pose variable.
● Example: PP_pickpoint = p[0.2, 0.2, 0.0, 2.15, 2.15, 0]

PP_home
This global variable stores the home pose. The home pose is the robot arm's safe
starting spot, used to approach the picking pose. Essentially, the home pose is a
translation of the pick pose in the negative direction of the picking pose's z-axis, moving
away from the object.

● Variable type: Pose variable.
● Example: PP_home = p[0.2, 0.2, 0.2, 2.15, 2.15, 0]

PP_prepick
This global variable stores the pre-pick pose.

● Variable type: Pose variable.
● Example: PP_home = p[0.2, 0.2, 0.2, 2.15, 2.15, 0]

PP_pickDeeper
This global variable stores the pick deeper pose.

● Variable type: Pose variable.
● Example: PP_home = p[0.2, 0.2, 0.2, 2.15, 2.15, 0]

Page # 17



URCap guide
BitMetrics | Version: 1.3

PP_postpick
This global variable stores the post-pick pose.

● Variable type: Pose variable.
● Example: PP_home = p[0.2, 0.2, 0.2, 2.15, 2.15, 0]

PP_category
This global variable stores the name of the category of the object to be picked. If no
suitable candidate was detected, its value is "-1 (None)".

● Variable type: String variable.
● Example: PP_category = "object"

PP_pickID
This global variable stores the pick point ID for the selected pick. If alignment was
selected for the detected category (by texture or geometry), this variable identifies the
picking point in the currently active picking point set. If a suitable candidate is detected
its value is "0", "1", etc. If not, its value is "-1 (None)".

● Variable type: String variable.
● Example: PP_pickID = "0"

PP_error
This global variable stores an error code that can be used to monitor and debug the
program.

● Variable type: Integer list variable. Format: [C1, C2, C3]
● Notes: The values of the elements on the list represent the error type (C1), error

code (C2) and error sub-code (C3). The possible values of this variable are
explained in the following table.

C1 C2 C3 Description

0 0 0 No error or warning to report.

0 2 x Warning: current pick pose is not reachable. Based on x value:
- 1: pick pose not reachable
- 2: pre-pick pose not reachable
- 3: home pose not reachable

Page # 18



URCap guide
BitMetrics | Version: 1.3

- 4: pick pose angle too high

1 0 0 Warning: Cycle time is greater than the specified threshold.

2 0 0 Disconnection error: Could not communicate with Pick[+].

3 x x Communication error: Could communicate with Pick[+] but there
was a problem sending/receiving data.

PP_angle
Variable that takes as value the angle of the current pick candidate. The first element of
the array contains the angle (in degrees) of the current candidate. A value of -1
indicates no candidate is currently being analyzed. The second element is for internal
use only.

● Variable type: Float array.
● Example: PP_angle = [15, 1]

PP_boxOrigin
This global variable stores the origin point of the selected environment box. If a box or
working surface was selected in the Pick[+] trigger node, the variable contains the origin
of the picking box or working surface coordinate system. This pose lets the system filter
objects by angle for better picking. If none is selected ("no_box"), the angle is still
calculated, but differently based on the camera setup (eye-in-hand or hand-eye). For
the safest and most reliable results, always define a box or working surface.

● Variable type: Pose variable.
● Example: PP_boxOrigin = p[0.2, 0.2, 0.2, 0, 0, 0]

PP_camSetting
Variable that indicates the camera setting we are working with: hand-eye or
eye-in-hand.

● Variable type: String variable.
● Example: PP_camSetting = "eye-in-hand"

PP_pickOffset
Variable that takes as value the offset from the pick point.

Page # 19



URCap guide
BitMetrics | Version: 1.3

PP_homeOffset
Variable that contains the offset with respect to the home pose selected by the user.

PP_calibration
Variable that stores the camera calibration. For eye-in-hand, it’s the pose of the camera
with respect to the tool flange. For hand-eye, it’s the pose of the camera with respect to
the base of the robot.

PP_connectivity
Boolean variable that monitors connectivity with the Pick[+] server.

PP_triggers
Variable that registers the number of consecutive triggers without any successful pick
(up to 3 at maximum). This can be used to change the photo pose when no candidate is
detected. If a candidate is found, the value will be reset back to 0.

PP_unreachable
Counter variable for the unreachable pick points among all candidates found.

PP_force
This global variable takes as value the force threshold set by the user.

PP_contact
Flag that indicates whether the TCP has made contact with an object.

Page # 20


